Events

You are here

Neuron-glial Interactions in Health and Disease: from Cognition to Cancer

EVENT: 
Seminar
Who Should Attend: 
Researchers
Event Flyer: 
PDF icon deisseroth_2-21-23.pdf

Speakers

Professor of Neurology and Neurological Sciences
Professor, by courtesy, of Neurosurgery, Pathology, Psychiatry and Pediatrics

Abstract

The nervous system regulates stem and precursor cell behavior across a range of tissues. In the central nervous system, neuronal activity is a critical regulator of development and plasticity. Activity-dependent proliferation of healthy glial progenitors, oligodendrocyte precursor cells (OPCs), and the consequent generation of new oligodendrocytes contributes to adaptive myelination. This plasticity of myelin tunes neural circuit function and contributes to healthy cognition. The robust mitogenic effect of neuronal activity on normal oligodendroglial precursor cells, a putative cellular origin for many forms of glioma, suggests that dysregulated or “hijacked” mechanisms of myelin plasticity might similarly promote malignant cell proliferation in this devastating group of brain cancers. Indeed, neuronal activity regulates initiation and promotes progression of gliomas in preclinical models. Crucial mechanisms mediating activity-regulated glioma progression include secretion of BDNF and the synaptic protein neuroligin-3 (NLGN3). NLGN3 induces multiple oncogenic signaling pathways in the cancer cell, and also promotes glutamatergic synapse formation between neurons and glioma cells. This synaptic and electrical integration of glioma into neural circuits is central to tumor progression in preclinical models. NLGN3 is necessary for the growth of gliomas in a range of preclinical models, and therapeutic targeting of NLGN3 is presently under clinical investigation. Thus, neuron-glial interactions not only modulate neural circuit structure and function in the healthy brain, but paracrine and synaptic neuron-glioma interactions also play important roles in the pathogenesis of glial cancers. The mechanistic parallels between normal and malignant neuron-glial interactions underscores the extent to which mechanisms of neurodevelopment and plasticity are subverted by malignant gliomas, and the importance of understanding the neuroscience of cancer.

Publications

Gibson EM, Purger D, Mount CW, Goldstein AK, Lin GL, Inema I, Miller SE, Bieri G, Zuchero JB, Barres BA, Woo PJ, Vogel H, Monje M
Neuronal activity promotes adaptive oligodendrogenesis and myelination in the mammalian brain
Science . 2014 May 2;344(6183):1252304. doi: 10.1126/science.1252304. Epub 2014 Apr 10.
Venkatesh HS, Johung T, Caretti V, Noll A, Tang Y, Nagaraja S, Gibson EM, Mount CW, Pollepalli J, Mitra SS, Woo PJ, Malenka RM, Vogel H, Bredel M, Mallick P, Monje M
Neuronal Activity Promotes Glioma Growth through Neuroligin-3 Secretion
Cell . 2015 May 7;161(4):803-16. doi: 10.1016/j.cell.2015.04.012. Epub 2015 Apr 23.
Venkatesh HS, Tam LT, Woo PJ, Nagaraja S, Gillespe SM, Lennon J, Ni J, Duveau DY, Morris PJ, Zhao JJ, Thomas CJ, Monje M
Targeting neuronal activity-regulated neuroligin-3 dependency for high-grade glioma
Nature . 2017 Sep 28;549(7673):533-537. doi: 10.1038/nature24014. Epub 2017 Sep 20.

When

Tuesday, February 21, 2023 - 12:30pm

Where

Zoom Meeting

More Information

Darlene White