You are here
The α-Ketoglutarate Dehydrogenase Complex as a Hub of Plasticity in Neurodegeneration and Regeneration
Abstract
Abnormal glucose metabolism is central to neurodegeneration, and considerable evidence suggests that abnormalities in key enzymes of the tricarboxylic acid (TCA) cycle underlie the metabolic deficits. Significant recent advances in the role of metabolism in cancer provide new insight that facilitates our understanding of the role of metabolism in neurodegeneration. Research indicates that the rate-limiting step of the TCA cycle, the α-ketoglutarate dehydrogenase complex (KGDHC) and its substrate alpha ketoglutarate (KG), serve as a signaling hub that regulates multiple cellular processes: (1) is the rate-limiting step of the TCA cycle, (2) is sensitive to reactive oxygen species (ROS) and produces ROS, (3) determines whether KG is used for energy or synthesis of compounds to support growth, (4) regulates the cellular responses to hypoxia, (5) controls the post-translational modification of hundreds of cell proteins in the mitochondria, cytosol, and nucleus through succinylation, (6) controls critical aspects of transcription, (7) modulates protein signaling within cells, and (8) modulates cellular calcium. The primary focus of this review is to understand how reductions in KGDHC are translated to pathologically important changes that underlie both neurodegeneration and cancer. An understanding of each role is necessary to develop new therapeutic strategies to treat neurodegenerative disease.