Circuit Organization of Mouse Motor Cortex

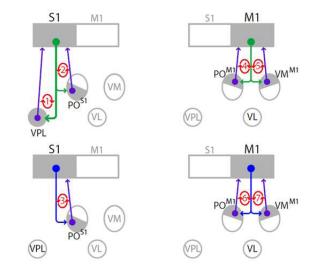
November 10

Tuesday, 12:30pm

Live Webinar via Zoom Conference

Speaker: Gordon MG Shepherd, M.D., Ph.D. Associate Professor of Physiology Principal Investigator, Shepherd Laboratory Department of Physiology & NUIN Feinberg School of Medicine Northwestern University Chicago, III

Host: Edmund R. Hollis II, Ph.D.


For more information, please contact **Darlene White** daw9085@med.cornell.edu

Burke Neurological Institute

Academic Affiliate of Weill Cornell Medicine 785 Mamaroneck Avenue White Plains, NY 10605 burke.weill.cornell.edu

Abstract

How do we control our hand movements? Our lab aims to understands the circuit-level mechanisms in the mouse's sensorimotor pathways controlling hand and forelimb movements. I'll discuss two lines of investigation. One is a bottom-up approach to characterize the celltype-specific connections of forelimb motor and somatosensory cortex neurons both locally and remotely, particularly in thalamus, where results are showing both shared and divergent connectivity patterns in cortico-thalamo-cortical circuits across areas. The other is a top-down ethological approach, aiming to characterize at high spatiotemporal resolution how mice move their hands and digits during natural feeding behaviors. Analysis of high-speed, close-up video is revealing the kinematic building-blocks of dexterous foodhandling movements, including a prominent role of the thumbs and ultra-fast stereotyped maneuvers.

1. Yamawaki N, Li X, Lambot L, Ren LY, Radulovic J, Shepherd GMG (2019) Long-range inhibitory intersection of a retrosplenial thalamocortical circuit by apical tuft-targeting CA1 neurons. Nature Neuroscience 22(4):618-626.

2. Barrett JM, Tapies MGR, Shepherd GMG (2020) Manual dexterity of mice during food-handling involves the thumb and a set of fast basic movements. PLoS ONE 15(1): e0226774.

3. Guo K, Yamawaki N, Barrett JM, Tapies MGR, Shepherd GMG (2020) Cortico-thalamo-cortical circuits of mouse forelimb S1 are organized primarily as recurrent loops. Journal of Neuroscience 40(14):2849-2858. PMID: 32075900.

