Molecular Mechanisms Underlying Neural Connectivity

October 29
Tuesday, 12:30 pm
Weekly Colloquium
Billings Building
Rosedale Conference Room

Speaker: Alex L. Kolodkin, Ph.D.
Charles J. Homcy and Simeon G. Margolis
Professor
Solomon H. Snyder Dept. of Neuroscience
Deputy Director, Institute for Basic
Biomedical Sciences
The Johns Hopkins School of Medicine
Baltimore, MD

Hosts: Rajiv R. Ratan, M.D., Ph.D. &
Yutaka Yoshida, Ph.D.

For more information, please contact
Lindsey Echevarria
lechevarria@med.cornell.edu

Burke Neurological Institute
Academic Affiliate of Weill Cornell Medicine
785 Mamaroneck Avenue
White Plains, NY 10605
burke.weill.cornell.edu

Abstract

We are interested in cellular and molecular mechanisms that mediate neural connectivity, some of which are phylogenetically conserved. The mammalian retina provides a particularly robust system for examining the molecules and cellular mechanisms that organize neuronal cell bodies and their processes in a precise manner to specific laminae. This presentation will include analyses of the cellular and molecular mechanisms that direct starburst amacrine cell (SAC) bodies and neural processes to their normal laminar locations in the retina. Conserved lamination mechanisms in the Drosophila CNS will also be considered, along with our current efforts to extend our work toward an understanding of neocortical lamination in the mouse.

