# Understanding the Multicellular Response to Injury in the Mouse Spinal Cord

## November 12

#### Tuesday, 12:30 pm

Weekly Colloquium

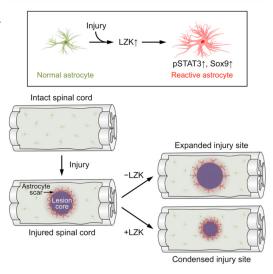
Billings Building Rosedale Conference Room



**Speaker: Binhai Zheng, Ph.D.** Professor, Department of Neurosciences Director, Microscopy Imaging Core UC San Diego School of Medicine Research Health Scientist, VA San Diego La Jolla, CA

Host: Yutaka Yoshida, Ph.D.

For more information, please contact Lindsey Echevarria lechevarria@med.cornell.edu


#### **Burke Neurological Institute**

Academic Affiliate of Weill Cornell Medicine 785 Mamaroneck Avenue White Plains, NY 10605 burke.weill.cornell.edu

### Abstract

Our lab studies the mechanisms of axon regeneration and sprouting after central nervous system (CNS) injury using mouse models of spinal cord injury. We started with the myelin-derived inhibitors and recently shifted focus to neuron-intrinsic pathways such as Pten/mTOR

and MAP3Ks. We documented an agedependent decline in axon regeneration and illustrated a multicellular role for the MAP3K12/13 pathway after CNS injury. Our in vivo imaging data supports a synaptic suppression hypothesis of axon regeneration.



1. Lorenzana AO, Lee JK, Mui M, Chang A, Zheng B. A surviving intact branch stabilizes remaining axon architecture after injury as revealed by in vivo imaging in the mouse spinal cord. Neuron. 2015 May 20;86(4):947-954.

2. Geoffroy CG, Hilton BJ, Tetzlaff W, Zheng B. Evidence for an Age-Dependent Decline in Axon Regeneration in the Adult Mammalian Central Nervous System. Cell Rep. 2016 Apr 12;15(2):238-46.

**3.** Chen M, Geoffroy CG, Meves JM, Narang A, Li Y, Nguyen MT, Khai VS, Kong X, Steinke CL, Carolino KI, Elzière L, Goldberg MP, Jin Y, Zheng B. Leucine Zipper-Bearing Kinase Is a Critical Regulator of Astrocyte Reactivity in the Adult Mammalian CNS. Cell Rep. 2018 Mar 27;22(13):3587-3597.



